Plan for the Visualization
Uses Plotly for interactivity and Matplotlib/Plotly animations for the dynamic spiral growth.
- Base Structure:
- A 3D torus to represent infinite flow.
- The circumpunct at the center to symbolize the source (1).
- Phi Spiral:
- A Golden Ratio (1.161) spiral wraps around the torus.
- Color-coded segments based on their progression or frequency.
- Interactivity:
- Allow zooming, rotation, and tooltips for the spiral to display values (e.g., ratios or frequencies).
- Animation:
- Animate the Phi spiral as it grows outward, dynamically unfolding across the torus.
import numpy as np
import plotly.graph_objects as go
# Parameters for the torus
R = 1 # Major radius (center of torus to tube center)
r = 0.4 # Minor radius (tube radius)
phi_ratio = 1.161 # Golden Ratio
num_frames = 100 # Frames for animation
num_points = 500 # Number of points for spiral
t = np.linspace(0, 2 * np.pi, num_points) # Angular steps
# Base torus grid
theta = np.linspace(0, 2 * np.pi, 100)
phi = np.linspace(0, 2 * np.pi, 100)
theta, phi = np.meshgrid(theta, phi)
x_torus = (R + r * np.cos(theta)) * np.cos(phi)
y_torus = (R + r * np.cos(theta)) * np.sin(phi)
z_torus = r * np.sin(theta)
# Spiral over torus
x_spiral = []
y_spiral = []
z_spiral = []
for frame in range(num_frames):
phi_spiral = np.linspace(0, phi_ratio * 2 * np.pi * (frame / num_frames), num_points)
theta_spiral = np.linspace(0, 2 * np.pi, num_points)
x = (R + r * np.cos(theta_spiral)) * np.cos(phi_spiral)
y = (R + r * np.cos(theta_spiral)) * np.sin(phi_spiral)
z = r * np.sin(theta_spiral)
x_spiral.append(x)
y_spiral.append(y)
z_spiral.append(z)
# Color gradient for the spiral
colors = np.linspace(0, 255, num_points)
# Create frames for the animation
frames = []
for frame in range(num_frames):
frame_data = go.Scatter3d(
x=x_spiral[frame],
y=y_spiral[frame],
z=z_spiral[frame],
mode="lines",
line=dict(color=colors, colorscale="Viridis", width=5),
name="Phi Spiral",
hovertext=[f"Frame {frame}, Phi {phi_ratio:.3f}"]
)
frames.append(go.Frame(data=[frame_data]))
# Base figure
fig = go.Figure(
data=[
go.Surface(x=x_torus, y=y_torus, z=z_torus, opacity=0.5, colorscale="Blues", showscale=False),
go.Scatter3d(
x=x_spiral[0],
y=y_spiral[0],
z=z_spiral[0],
mode="lines",
line=dict(color=colors, colorscale="Viridis", width=5),
name="Phi Spiral",
),
],
frames=frames,
)
# Add circumpunct
fig.add_trace(
go.Scatter3d(
x=[0], y=[0], z=[0],
mode="markers+text",
marker=dict(size=10, color="red"),
text=["Circumpunct (Source)"],
textposition="top center"
)
)
# Layout adjustments
fig.update_layout(
scene=dict(
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False),
),
title="Interactive Toroidal Visualization with Phi Spiral",
updatemenus=[dict(type="buttons", showactive=False, buttons=[dict(label="Play",
method="animate",
args=[None, dict(frame=dict(duration=50, redraw=True), fromcurrent=True)]),
dict(label="Pause",
method="animate",
args=[[None], dict(frame=dict(duration=0, redraw=False), mode="immediate")])])],
)
# Save and display
fig.write_html("interactive_toroid_phi_spiral.html")
fig.show()


Sources: InnerIGPT
Stay in the Now within Inner I Network
