Roadmap – 21 InnerI Models – Full Reskilling

Phase 1 — Boot & Baselines (1–5)

1. autotrain-Llama2chat

Why: gentle on-ramp to chat fine-tunes.

Do: run inference, inspect tokenizer, export to GGUF.

2. NousResearch-Llama2-chat

Why: compare a known chat baseline.

Do: side-by-side eval vs #1 (accuracy, toxicity, latency).

3. NousResearch-Llama2-7bhf

Why: plain 7B base; learn prompting vs. instruction.

Do: simple domain prompts; log failure modes.

4. autotrain-innerillm2

Why: try AutoTrain workflow end-to-end.

Do: tiny domain fine-tune, create a clean Model Card.

5. I-NousResearch-Yarn-Mistral-7b-128k

Why: long-context handling.

Do: load 100k token docs; test chunking vs true long context.

Phase 2 — Merges & Specialty (6–12)

6. InnerILLM-7B-slerp

Why: learn SLERP/merge basics.

Do: compare to base; quantify style/quality shifts.

7. InnerILLM-0x00d0-7B-slerp

Why: variant merge discipline.

Do: ablation: which parents improve which tasks?

8. InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp

Why: deeper merge tree.

Do: build a merge manifest; reproducibility script.

9. InnerI-AI-merge-7B-slerp

Why: your house “meta-merge”.

Do: run eval harness; freeze a release tag.

10. InnerI-sn6-merge-7B-slerp

Why: compare another merge lineage.

Do: pick best for RAG generator upstream.

11. A-I-0xtom-7B-slerp

Why: explore alt parent flavors.

Do: controlled tests on coding/doc QA.

12. I-Code-NousLlama7B-slerp

Why: specialize for code-assist.

Do: pass@k smoke tests; tool-calling guardrails.

Phase 3 — OpenPipe / Solar / Chat (13–16)

13. InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp

Why: see an OpenPipe-optimized lineage.

Do: latency/cost profiling vs #6–#12.

14. I-OpenPipe-NH2-Solar-7B-slerp

Why: Solar/NH2 flavor for reasoning.

Do: structured output eval; chain-of-thought not exposed.

15. InnerIAI-chat-7b-grok

Why: chat flagship.

Do: production chat demo + safety notes.

16. InnerI-bittensor-7b

Why: dive into decentralized inference.

Do: document the networking model; risks & benefits.

Phase 4 — Synthetic & CAI (17–21)

17. CAI

Why: base asset for our “Inner I Conscious/Creative AI” line.

Do: define the system prompt kernel + values.

18. CAI-synthetic

Why: synthetic data pipeline.

Do: show uplift on weak domains; quality filters.

19. synCAI-144k-gpt2.5 (0.4B)

Why: tiny/fast, long-context tester.

Do: mobile/edge use; cost/perf table vs 7B.

20. synCAI-144k-llama3.1

Why: long-context Llama track.

Do: 120k+ token RAG benchmark; hallucination guard.

21. InnerI/InnerILLM-7B-slerp (or best performer) as Prod Agent

Why: ship the stack.

Do: containerize (FastAPI), add pgvector memory, Langfuse tracing, evals, CI/CD, live demo.

Sources: Agentic Inner I Protocol

Stay in the Now

Within Inner I Network

Leave a comment